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Quantum mechanical equations should look the same in any non-orthonormal 
or orthonormal basis frame when properly formulated so as to be fully 
covariant under the largest group indicated. Non-orthonormal  frames are 
crucial especially for the quantum theory of chemistry. Various methods such 
as valence-bond, localized orbital, molecular orbital, etc. result from a single 
formulation using the principle of  linear covariance which is stated, proved, 
and exemplified. Molecular quantities with the full inclusion of overlaps are 
derived with the same ease as without overlaps. 
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I. Introduction 

A fundamental  aspect of  quantum mechanics is the "superposit ion principle" 
[1]. Hence, the quantum mechanical machinery is built on abstract linear algebra 
and the theory of linear operators. Quantum mechanical procedures involve, in 
one form or another, transformations from one complete basis set to another in 
the Hilbert space (e.g. {]p')} ~ {]q')} or {[0E)} ~ {]q')}, etc.). The requirement that 
eigenvalues of  observables have to be real dictates Hermitian operators for the 
observables. Fortunately, the eigenvectors of  Hermitian operators form complete 
basis sets which are also orthonormal (O.N.) (degenerate ones can be made O.N.). 

The O.N. nature of  basis sets are preserved under unitary transformations. Unitary 
transformations also leave expectation values and /o r  eigenvalues unchanged. 

That O.N. basis sets have been used most often both in physics and in the quantum 
theory of  chemistry rather than non-O.N, ones, may be tracable to the aforemen- 
tioned key theorems on Hermitian and on unitary operators. However, where 



234 O. Sinano~lu 

basis sets are used for purely computational purposes by the variational principle, 
there is no a priori requirement that basis sets be O.N. The vectors of an arbitrary 
basis set are not in general the eigenvectors of an observable anyway. 

Still, O.N. bases have been sought after for the convenience they afforded in the 
evaluation of  e.g., N-eectron matrix elements between determinantal wave func- 
tions (w.f.) as in the Slater-Condon rules [2, 3]. The convenience continued in 
the theory of finite many-particle correlations [4]. 

The customary, algorithmic convenience of an O.N. basis is best displayed by 
the unity operator (I) trick: 

With {[ei)} the complete O.N. basis, 

co 

I =  2 lei)(eg[ (1) 
i_>l  

from I ~= I and 

(e,[e~) = 5u- (2) 

To find the representation of an operator A on {[e~)}, the familiar trick is to insert 
an /, Eq. (1), whereever needed to get the matrix form of A: 

IAI  = 2 [e,)(e, lalej)(eJ[, (3) 

hence 

A = {A0}; A~ = (e, lA I ej) 

(similarly to go from one O.N. basis to another, e.g., {]ei)} to {Ilk)}, / 2=  I with 
one I in each basis in IZ). 

However, orthogonal or unitary transformations are not the most general ones 
allowed fundamentally by the "superposition principle". Any linear transforma- 
tion including those involving non-orthonormal vectors should do. 

Considering a countably infinite dimensional linear vector space V,(n-)oo), the 
largest group of transformations implied by the "superposition principle" should be 
not the orthogonal, nor the unitary group~, O(n) or U(n), but the general linear 
group GL(n, C) over the complex field C (or in many applications [-5] just over the 
real field R, i.e., L(n, R)). 

The quantum mechanical machinery has not been based by and large, on the use 
of the most general linear transformations. There have been few occasions in 
atomic physics for using non-unitary transformations and non-O.N, bases. A 
striking case is in the prediction of accurate lifetimes, optical and other transition 
probabilities for many-electron atoms [6]. That development which went hand-in- 
hand with beam-foil spectroscopy [7] a decade ago, required matrix elements for 
the then new correlation effects [8] between sets of initial and final determinantal 
(det) w.f.'s where the orbitals in the bra dets are not orthogonal to those in the 
ket dets. 
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In the quantum theory of chemistry on the other hand, non-orthogonal bases are 
pervasive, and crucial [9]. 

Take e.g. the valence-bond [10, 11] method (VB). The atomic orbitals (AO) 
centered on neighboring nuclei are certainly not orthogonal. Such overlaps, 
A,v = (e~,le~) are often close to a half. If they are neglected, no chemical binding 
results ! Yet in qualitative quantum chemistry they were often assumed to be zero 
(to mimic an O.N. set again). Equations and computations including all the 
overlaps looked unwieldy. 

That is one reason why molecular orbitals (MO) got to be preferred in the late 
fifties over the VB method. The MO looses the chemist's intuitive structural 
picture of isolated bonds and lone pairs as in the "ball and stick models" of 
molecules. But MO's are O.N., being the eigenvectors of an effective one electron 
hamiltonian. In actual calculations of MO's too it turned out, the A O - A O '  
overlaps A could not be neglected, though in the initial semiempirical MO 
methods such as the Hfickel [12, 13] one they were. Since the semi-empirical 
methods nevertheless worked better, it appeared the non-O.N. AO's could be 
first transformed into orthogonalized AO's (OAO's) [9]. Then the meaning of the 
parameters changed, but the formalism could still be based on an O.N. set. 

Many of the basic difficulties that still plaque the quantum theory of molecules 
and reactions appear to be due to the seeming dichotomy between the chemist's 
structural picture, alright in the VB but then at the expense of the non-orthogon- 
ality problems, and the MO, delocalized orbitals (O.N. basis) method which is 
more like the band theory of metals. Adding to the complication is the difficulty 
of treating electronic excitation in the VB method. MO's are easier in this, but 
they too get into serious difficulty due to the non-O.N. AO's in e.g. the vacuum 
ultraviolet spectra of molecules (cf. the notion of "pre-Rydberg" excited states, 
introduced by this writer, in connection also with the non-O.N, problem) [14]. 

Lennard-Jones [15] (L.-J.) and subsequent workers [16] attempted to recover the 
chemical structural picture from the MO's. In special, symmetric cases like the 
methane molecule, CH4, L.J. transformed (unitary) the MO set into still O.N., 
localized orbitals, the LO set, which looked like bonds without affecting the 
values of the observables. But where the molecule lacked a high point group 
symmetry, e.g., even in propane, C3H8, the L.-J. transform did not apply. It could 
only be extended by introducing some ad hoc and rather arbitrary localization 
criteria [16] (a very recent development by Luken [17] appears so far to have the 
easiest to use, yet physically meaningful criterion). 

The VB and MO formalisms look very different though it is known that if they 
are both extended they should yield the same result [1 1]. The VB and MO's are 
treated in chemistry as if they were different fields of study. 

One more and now major difficulty for chemistry is that, in both VB and the 
MO, each geometry of each atom cluster, and each molecule is treated as a 
separate problem. It has been awkward or impossible (in part due to the non-O.N. 
bases) to relate different molecules, isomers, different geometries to each other 
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(cf. Ref. in [5]) especially when the species lacked extensive point group sym- 
metries [18-20]. 

In short, it appears a general formulation is needed which can relate different 
molecules to each other directly, as well as give all at once both the VB and the 
MO (and LO, OAO, etc.) pictures dealing head-on with the non-unitary transfor- 
mations involved. 

The present paper introduces a covariance principle, tha.t of linear covariance 
which follows from the fundamental linearity of quantum mechanics. The author 
developed it initially both for the chemical problems and for the wider context 
of the general mathematical machinery of quantum theory. The principle also 
leads to a deeper understanding of the origin of higher symmetries in the Hilbert 
space and their relation to those in the 3-dim. Euclidean space. 

2. Principle of linear covariance 

We state the principle in three interrelated parts: 

i) The abstract kets, bras, operators, and relations involving them are to be viewed 
as invariants under any linear transformation of bases ("coordinate frames") 
S c_ L(n)  on Vn where Sis non-singular (I SI # 0). The abstract objects are unaffected 
by arbitrary changes of bases for their representation, whether the bases are 
non-O.N, or O.N. so long as they are complete. Starting with one complete basis 
set, the non-singularity of S ensures that the new set is also complete (cf. Ref. 
[14], p. 379 for cases in the MO's of molecular states where conventional theories 
lost the singularity of S causing the "A-catastrophe" [14]). 

ii) In component form, any quantum mechanical equation should be linearly 
covariant. 

iii) Regardless of which basis set (complete) is used out of the infinite number 
of sets possible, O.N. or non-O.N., quantum mechanical equations written out 
in component, i.e. tensorial form should look the same. 

The (iii) implies for example that, if properly formulated, i.e., in covariant form, 
quantum chemical equations will look the same whether they refer to VB, or 
MO, LO, OAO or any other description (each treated in the past as a distinct 
method) of the same physical problem. Any corrections needed to the conventional 
forms of each such method, will now be deducible by looking at what is missing 
from the conventional (non-convariant, intuitive, etc.) equation as compared to 
the covariant equations. 

The principles stated above are amplified, proved, and exemplified below. 

3. The metric tensor, covariant and contravariant components 

If we start from an O.N. basis set {[e~)} for Vn, the "overlap matrix" 

{ ( e, lej) = 3,j} (4) 
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remains invariant under any orthogonal (or unitary) transformation as does the 
"closure" relation, Eq. (1). 

With a complete, but non-O.N, basis {Ifk)}, Eqs. (1) and (4) no longer hold. We 
have the non-diagonal A: 

(AIY,) = ak,. (5) 

The A is the metric tensor under L(n)  whose diagonal form is / ,  the latter acting 
as the metric for the Cartesian tensors under O(n)  (analogously U(n)  if field = C). 

For arbitrary S ~  L(n),  contravariant components {a i} are obtained from the 
covariant ones {a~} by 

a i = AWa s (6a) 

(repeated indices summation convention applies if one up, one down). 

Only in O.N. frames 

[a i=  6~ = ~ i ja  j = ai]o(n) .  

Generally with any non-O.N, or O.N. frame, we have 

A ~ Ajk = 6ik. (6b) 

Thus if A-= {Aq}, then (A-l) § {A0} (where (+)  is adjoint"). 

General L(n)  tensor components are raised and lowered by A as in Eq. (6a) and 

as = Ajka k. (6C) 

4. The "Unity Trick" extended to non-O.N, frames 

Eq. (1) becomes applicable to arbitrary L(n)  frames as the L(n)  invariant 

I = Iff)(fl  = Ifk)(fk[. (7) 

Thus, abstract objects can be described in any L(n)  frame using Eq. (7). E.g. 

I*) = II '~) = I f ' ) ( f l ~ )  

[*) = [if)c, = [fk)c ~. (8) 

This form is the same in any O.N. or non-O.N, frame, showing also that indeed 
the abstract object ]~) is invariant regardless of the L(n)  frame used for its 
description. 

Similarly for an abstract (hence L(n)  frame independent) operator like H, 

H = 1141 = [f)O6jHJfk)(fk[ 

H = H~klf)(fk [ (9) 

or alternately 

H = H ~ k [ f ~ ) ( f k [  
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o r  

g ! k l f ) ( f k ]  

yielding the contravariant {H~k}, the covariant {H~k}, or the mixed tensor {H!k} 
forms of  H. 

5. Examples of L(n)-frame independent abstract operator relations and their 
invariant, covariant, and contravariant forms. 

5.1. Effective one-electron energy eigenvectors for  a molecule 

The abstract form of  the characteristic equation from which the MO energy levels 
{hi} and the MO's {[~i)} (e.g. Hfickel ones) [12] are obtained is 

(h - AI)]'t') = 0. (10) 

This is the physical statement independent of any L(n)-frame. 

Normally the one electron (e-) Hilbert space is projected onto the "valency vector 
space" [5] of  dim = [no. of atoms of each kind x no. of valence shell AO's of 
that atom]. We can therefore take the V. to be the valency vector space now. 

For an O.N. frame, e.g., the valency shell MO set, {[~i)}, using I = ~]~>l [~i)(~,[ 
on Eq. (10), (and in this case [q~)= [~i)), we get 

I~>(~ ,  I h I~j>( Oil O> - a IxI*,>(~il~> = O. (1 l a) 

If  ]~) is one of the eigenvectors ]~k) with a = a (k) then 

hijt~jk -- A (k)t~jk = O; hik = A (k)t~ik (1 lb) 

showing h~j is diagonal in this frame. 

For the non-O.N, valency AO's frame {I e~)}, we have I = ]e~)(et ] and le t )  = A~Ve~). 
On Eq. (lO), the I 's  give 

le t ) (e t lh lev)(e~lq ~) - A I et)(e. I*) -- 0 (12a) 

or since the basis vectors let)are linearly independent (]A] ~ 0), 

h~,~c ~ - Ac t = 0 (12b) 

where e.g. c, --- (e,  lqQ. 

Eq (12b) is a covariant form o f  Eq. (10) and will look the same in any L(n)-frame. 

If we identify h,,, the covariant components of h in the non-O.N. AO frame with 
the AO-basis hamiltonian matrix h from which the usual 2D or 3D Hiickel 
calculations are made (h ,  =- ai, h o =- ~o =- flu) [11, 12, 21, 22], then c t are the usual 
LCAO MO (linear combinations of AO's MO) coefficients. 

The explicit non-O.N. AO matrix form of Eq. (12b) is obtained for actual 
calculations by c ~~ A cp where now {A~~ + 

h ~ - l c  --AC = 0. (12c) 
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If we interpret Eq. (12b) for the O.N., OAO-frame, A = 3 ~  = 3 ~  = 8~, then we 
get the explicit matrix form 

h'c' - Ae' -- 0 (13) 

where now the elements of h' are calculated with the OAO's and the c' are the 
LCOAO MO coefficients. Eq. (13) formally looks like the conventional 2D Hfickel 
method [12] where the overlaps were neglected (cf. also. [9]). 

One may note that h (non-O.N. AO basis), and the h' (O.N. OAO's) by itself, 
do not have the same eigenvalues. The h and h' are related by 

I _ _  *p ~- 
h ~  - S~ ho~S.~ (14a) 

where S ~ L(n)  is a non-unitary transformation. (From Eq. (7), S~ = ( f ,  [e p) where 
f--- OAO and e -- AO). 

While unitary or orthogonal transformations of the basis frames preserve the 
eigenvalues of h, the non-unitary ones out of the general L(n) do not. The "energy 
level pattern indices" ("LPI")  of h are however preserved. The LPI are the three 
numbers {no, n+, n_} where no = no. of zero eigenvalues (e.v.), and n+ and n_ the 
nos. of positive and negative eigenvalues of h relative to the reference zero of 
energy chosen for h and A initially. The LPI therefore are the more fundamental 
electronic invariants of  a molecule as indicated by the above principle of linear 
covariance. 

The actual energy eigenvalues are given not by h (AO basis) by itself (compare 
Eq. (12c)), but by h' (OAO basis) since the OAO-frame and the MO-frame are 
related by a unitary (or orthogonal) transformation (but not the {AO} ~ {MO}). 

5.2. Total electronic (2D or 3D Hiickel) energy of a molecule (or cluster) and the 
electron density 

The sum of the occupied MO orbital energies (which in the 2D or 3D Hfickel 
method is taken as the total electronic energy) [23] is 

E(HMO) = Tr p h  (15) 

with p the one electron density operator [1]. This abstract form and of course 
the value of E are L(n)-frame invariant. 

Specializing to the O.N. MO-frame with I = ~ g  I'~i>(~,l on the valency vector 
space Vn, 

E(HMO) = Pij hji = pqhji(Mo ..... ,. (16a) 

By Eq. ( l lb )  md from [1] p = ~  p(i)l~b,)(~bil with p(~ 1,2}, the number of 
electrons occupying the MO, (i), 

n 

~ ( H M O )  = ~ ,  p(i)~(i). (16b) 
i > l  
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The expressions for E and p in other frames (non-O.N. AO, O.N. OAO, O.N. 
LO, non-O.N. LO, etc.) have been derived in the past, each time as a special 
formalism, having been especially cumbersome with inclusion of overlaps (non- 
O.N. AO's) [11, 22] The principle of linear covariance gives an immediate deriva- 
tion of all these versions. 

Using I = [e")(e~[ for any arbitrary, general L(n)-frame in Eq. (15) one gets the 
frame-invariant 

E(HMO ) = Tr]e~')(e~lp[e~)(e~[h[e')(e~[ = p~,h~8~ (17a) 

(used Tr[)([ = (])), or 

= p h ~ -  p.~h.~,. (17b) E(HMO ) = p~h  ~ ~ - ~ 

This same L(n) invariant or covariant form can now be interpreted for the different 
bases: i) The MO frame recovers Eq. (16b), ii) for the O.N. OAO basis, { h ~ } ~ h  
in the a, 13-semi-empirical Hfickel form with the overlaps formally ignored but 
now implicit in the values of the matrix elements. The p ~ ( O A O ) =  p~(OAO), 
and pg~(OAO)= P ~  = the usual "charge-bond order matrix" of MO-theory [11] 
(cf also below); iii) for the non-O.N. AO basis, E(HMO)= (p~h~)AO with 

{h~}~{h}Ao=(a ,~-mat r ix  but different values of the elements than with 
OAO's), 

and 

p ~  = A~'~p~A~)(non. O.N. AO's). (18) 

~(AO) The ~,~ still looks like the "charge-bond order matrix" P~  but the values of 
its elements are not the same as the (OAO)-one. Only p~ ,  Eq. (18) with the A's 
in it would give the correct E(HMO) in p~'"h~,(AO), not p~,,h,,u(AO). 

The covariant formulation also gives the explicit expressions for the actual 
calculation of charge-bond order matrix elements in each frame as shown below. 

Let S ~ L ( n )  be the transform from the MO-frame {[0~)} to the OAO-frame 
{[e~)}. The S defined by 

[e~) = S~[0~) (19a) 

is obtained from [e~)= I]eu)= [0~)(0~[e~,), as 

S~ -- (O'le.). (19b) 

Similarly ]~0k)= [e~)S~, and 

S.~ ----- ( e ~ l ~ k )  ( 2 0 a )  

but there are the LC OAO MO coefficients, 

(e~'] ~bk) = c.~. (20b) 

Since S is from O.N. to O.N. (and often involving only the real field), 

S ~ O ( n ) c  U ( n ) c  L(n).  (21) 
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Now we transform the density p from the MO frame where it is known (Eq. (16)) 
to the new OAO frame using S. 

s: {m}<MO>-* {P~}<o~o) 
.i y (22a) p . ~  = S ~ p u S .  ~. 

Being 

O.N. (O.N.),  S~ = S.~. (22b) 

Hence, 

p~,~(OAO) = Gipocj~. (23a) 

The (OAO) charge-bond order matrix {P~} ~- P explicitly results (using also Eq. 
16b): 

(i) + p(OAO) 
,.~ = - (P au)c,~icvj 

ia>_ 1 (23b) 
rt 

p(OAO) ~ ( i )  + 
--~zv = P C~iC vi 

i>_l 

the customary expression [11] for P with AO overlaps ignored, or better yet with 
AO's interpreted as OAO's. 

The covariance principle yields also the non-O.N. AO basis {If,)} form of p just 
as well. Eq. (22a) looks the same, but (22b) is no longer true. 

, v. i  t j  

p ~  = S ,  p i jS .v  (24a) 

AO(Non.O.N. ) (MO) 

t . i  i __ , . ~ #  C[~ ( 2 4 b )  S. =(f.lW )= c. 

where only the latter, c'.~ are the standard LCAO MO coefficients. 

But 

,.i= A,~clT--A ,,Aki__A ,~ki A~c.i (25) C.t. __~alzrC.klAt __ tx.rC.kO = tr 

with {A~,~}~A, the std AO overlap matrix. Therefore from Eqs. (25) and (24a) 
we obtain 

n (i) ~-i +ri'~- 
P ~ v  : A I x .  r i~lP~ c c 

(AO-frame; non-O.N.) =_ ) o  

{P; ,} = a e ~  (26) 

The one-electron density matrix ("charge-bond order") is calculated, by first 
calculating the pO in terms of the LCAO MO coefficients a s  i f  the AO overlaps 
were neglected. Then Eq. (26) using the overlap matrix converts pO into the 
proper one P '  for the non-O.N. AO's. 
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Such derivations which otherwise are cumbersone in quantum chemistry thus 
readily follow from the covariance principle. 

Other examples and applications (e.g. in the many-electron theory great ease is 
afforded by the covariance principle) [23] for a fixed molecular geometry, as well 
as in relating different molecules, geometries and symmetries to each other [5] 
will also be reported. 
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